

iBwave CERTIFICATION COURSE SYLLABUS

LEVEL 2: PROPAGATION, COLLECTION AND ORTHMIXATION

Note: Course syllabus is subject to change

LEARNING OBJECTIVES

At the end of this certification program, you will be able to:

- Plan for network scalability and expansion with reference to cables, connectors, and network components in Active DAS
- ✓ Run predictions using the Propagation Module
- ✓ Import and modify survey data using the Collection Module
- ✓ Calibrate and validate Fast Ray Tracing model parameters
- Import an outdoor prediction and use outdoor maps to visualize outdoor signals
- Optimize the network design by running predictions using the Optimization module
- ✓ Verify the project design to ensure accuracy and quality

PRE-COURSE FUNDAMENTALS

- ✓ Radio wave propagation basics
- ✓ Basic propagation models
- Antenna characteristics
- ✓ In-Building Propagation Models
- ✓ In-Building Propagation Measurement Guidelines

ACTIVE DAS/POWER SHARING

- Active DAS vs Passive DAS
- ✓ Active DAS Architecture
- ✓ Types of components
- Active DAS component examples
- ✔ Designing an active DAS fiber network
- ✔ Power sharing

PROPAGATION

- ✔ Propagation models
 - Fast Ray Tracing (FRT)
- ✔ Empirical (COST231)
- ✔ Variable Path Loss Exponent (VPLE)
 - Free Space Path Loss (FSPL)
- Process of running predictions
 - Prediction settings: configuring prediction and propagation properties
 - Defining prediction areas, environment types, and body loss zones
 - Propagation output maps: Signal Strength, RSCP, Handoff, Best Server, LTE RSRP, Service Count, and Field Strength
 - Output map reports

COLLECTION

- ✓ Data Collection
 - Importing survey data: from iBwave mobile or third party collection tools
 - Collecting data manually
 - Displaying and editing survey trace routes
 - Interpolating surveys
 - Survey data reports
- ✓ Calibration
 - Measurements required for model calibration
 - Identification of appropriate measurements to improve model accuracy
 - Propagation model calibration
- ✓ Validation
 - Calibrated model exponents
 - Calibrated versus uncalibrated projects
 - Coverage threshold planning

OPTIMIZATION

- ✓ Importing Outdoor Prediction
 - Defining building properties and coordinates
 - Importing outdoor predictions
 - Comparing outdoor and indoor predictions maps
- ✓ Optimization output maps
 - Setting up network optimization parameters
 - Integrating outdoor (neighboring) signals
 - Types of optimization output maps: Nature of Path, Interpolation Signal Strength, SNIR, MADR, Total Received Power, Handoff, Active Set, Eb/No Achievable Service Coverage, Dominance over Macro, Optimal Antenna Placement, LTE maps, and Uplink maps

ADVANCED DESIGN VALIDATION

- ✓ Validation checklist
 - Project property parameters
 - Systems
 - Debug message list errors and warnings
 - PIM calculations
 - Building materials
 - Floor plan scale and referent point
 - Floor plan order
 - Output map parameters
 - Comparison of predicted versus measured data
 - Report data

DESIGN FROM SCRATCH WORKSHOP

- Creating a new project: set up project properties; add floors, walls and surfaces according to specifications
- Designing a network: add systems and Active DAS components according to specifications
- ✔ Running predictions: create and run output maps according to specification

FINAL EXAM

(3 hours)